[スポンサーリンク]

一般的な話題

周期表の歴史を振り返る【周期表生誕 150 周年特別企画】

[スポンサーリンク]

1869 年にドミトリ·メンデレーエフが周期表を提案してから、150 年が経ちました。これを記念して、メンデレーエフの功績と周期表の発展の歴史を振り返ってみようと思います。

2019年は周期表生誕150周年!

2019年は化学界において、とっても重要な記念すべき年なのですが、みなさんご存知でしょうか。そうです。ドミトリ·メンデレーエフが1869年に周期表を提案してちょうど150年目にあたるのが、この2019 年です (関連記事: 今年は国際周期表年!)。

Twitter Facebook の化学系アカウントをフォローしている人ならば、 #IYPT2019 なるハッシュタグを目にすることがあるのではないかと思います。これは国際連合総会や UNESCO 2019 年が The International Year of Periodic Table である」と宣言し、それを宣伝するために作られたハッシュタグです2。周期表の発明は化学に限らず物理学や生物学などの科学全体に大きな影響を与えたため、その生誕150周年に当たる2019年を祝福するムードが全世界で広がっています。

さて、ドミトリ·メンデレーエフが1869年に周期表を提案したとは言ったものの、当初の周期表は2019年現在広く知られている周期表と全く同じというわけではありません。せっかくなので周期表の発展の歴史を振り返りましょう (メンデレーエフの功績についてはこちらも参照)

周期表は性質の似た元素が並ぶように元素を配列した一覧表

ロシアの化学者ドミトリメンデレーエフは、1869年当時発見されていた 63 の元素について原子量が大きな順に並べつつ、さらに性質が似たもの同士が並ぶように配列しました。これが周期表の始まり、ということになります。

せっかくなのでメンデレーエフが発案した初期の周期表ご紹介しましょう。

上部のロシア語のタイトルは「元素の系統についての草案 原子量と化学的性質の視点に基づいて」みたいな意味らしいです. 元素のあとに”=” で結ばれた数字は原子量 (原子の重さ) に相当します. (図は wikipedia から引用)

なに?! 元素が縦に並んでいるだと?! 開発当初の周期表は原子量が小さいものを左上に置き、下に行くにつれて原子量が増加し、次の周期になると右の列から再スタートしているようです。したがって、いわゆる族は横方向に並んでいます。

周期表は元素の性質を理解するツールとして鮮烈にデビュー

ここで、メンデレーエフの初期の周期表の中で、アルミニウム Al やケイ素 Si 右側が「?」 になっていることに注目します (上の図の中央付近)。そこは現在のガリウム Ga と ゲルマニウム Ge に相当します。それらは当時発見されていませんでしたが、 メンデレーエフはそこには未発見の元素が入るはずだと予想します。それらをエカアルミニウムやエカケイ素と仮の名前をつけ性質を予想しました。これが見事的中するわけです。

メンデレーエフによるガリウム (エカアルミニウム) の性質の予測と実際の性質. (表の内容はChemistry LibreTextから引用). メンデレーエフは単体の融点が「低い」と予想しています. 実際にガリウムは30 ºC 付近で液体になる金属です. 一般的な金属は固体ですから融点は高いはずです. “融点が 低い” という予想は大雑把に聞こえるかもしれませんが, 当たっています. 

メンデレーエフの周期表以前に元素の一覧表がなかったかのかと言われるとそうではありません。それにも関わらずメンデレーエフが見事だと賞賛される理由は、周期表を作る中で空欄になってしまった部分に注目し、そこには当時発見されていない元素があるはずだとその存在と性質を予測し、的中させたことにあるのです。周期表は、科学者が元素の性質を理解するための強力な武器として鮮烈にデビューしたと言えるでしょう。

メンデレーエフ周期表の改善点

もちろん開発当初の周期表にはいくつかの改良点がありました。例えば当時貴ガスは発見されていなかったことから、貴ガスの行 (現在では列) がありませんでした。また、 似た性質の元素が並ぶように配置するためには、原子量順に並べるルールを一部の元素で無視しなければなりませんでした。例えばテルル Te とヨウ素 I に注目すると、テルルの方が原子量が大きいにもかかわらず、テルルがヨウ素より先に配置されています。この配列の根拠は、ヨウ素は明らかに臭素や塩素のような他のハロゲンの性質に似ていることに拠ります。このような例外が生じたのは、本来の原子番号の順番は原子量順ではなく、原子の核の正電荷の順でなければならなかったからです。しかし原子の構造に関する知見は当時なかったため、原子番号の順に例外が生じたことはメンデレーエフの落ち度ではありません。原子の構造が解明されてからは、原子の核の正電荷の順に並べるというルールに改定され、同時にテルルヨウ素逆転問題は解決されます。こうして周期表の順序に物理的な裏付けがなされるわけです。

時代とともに発展する周期表

新たな元素の発見や原子の構造の解明に伴って、周期表の形は発展していきます。その発展の様子を追っていきましょう。下に示しますのはメンデレエーエフが発表した2番目の周期表です。この時点で、元素の並びは横向きとなっていますね。 表の一番上の項目に RH や RO なる記号が追加されていることにも気付きます。これらはいわゆる族の番号に対応しています。つまり、その列に属する元素の水素化物 RH や酸化物 RO の組成式で族を命名しているわけです。

メンデレーエフによる二番目の周期表. 図はWikipedia から引用.

亜族を追加した短周期型周期表

メンデレーエフの第二の周期表をベースにして貴ガスやランタノイド、アクチノイドが追加されたいわゆる短周期型周期表が誕生します。この短周期型周期表には 1 (I ) から 8 (VIII ) までしかないかわりに、それぞれの族をAかBの亜族で振り分けしています。どうなっているのかというと、現在の周期表の1,2, 13…17 族が短期周期型周期表では IA, IIA, IIIA, …, VII 族に対応し、現在の3, 4, …, 11, 12 族が短周期型周期表では IIIB, IVB, …, IB, IIB 族に対応します。ややこしいですが、周期表の縦同士で性質が似るという関係はどうにか保っています。

1990 年ごろまで使用された短周期型周期表. Iから VIII の族がさらにAとBの亜族に分類されます. 

Bayley や Bohr のピラミッド型周期表は原子構造を反映

短周期型周期表の亜族のややこしさをなんとかしたのが Bayley (ベイリー) の横向きのピラミッド型周期表です。これは第3周期から第4周期に渡るときに (図では II から III へ渡るとき)、族を二つに分裂させてているため、いわゆる典型元素や遷移金属元素のブロックを分けることに成功しています。ベイリーがこのピラミッド型の周期表を提案したとき、原子の構造については明らかになっていなかったため、ベイリーにそのようなブロックを作ろうとした意図があったかどうかはわかりません。しかしその後、原子模型を考案したことで有名な Bohr (ボーア) もピラミッド型の周期表を提案しています。周期表に原子の構造を反映させるためには、短周期型周期表の亜族を分離する必要があるとボーアは気づいたのではないか、推測してしまいます。周期表は、元素の性質だけでなく原子構造をも理解するツールとして発展を遂げようとしています

Bayley の周期表. 図は [5] の文献から引用.

ただし、このピラミッド型周期表では族同士の繋がりがパッと見で区別しにくくなっていることは事実です。例えばナトリウム Na から伸びた線をたどることで、Na と同じくアルカリ金属元素であるカリウム K へ導けます。ナトリウムはピラミッドの縁なので、あまり苦労なくカリウムまでたどれますが、内側にあるリン P などから次の周期の元素を探すのはまるであみだくじの線をたどるようなもどかしさがあります。再びナトリウムの例に戻ると、ナトリウムからは本来線を結ぶ必要がない銅 Cu にも線が伸びています。メンデレーエフの周期表では亜属という形で Na と Cu を区別していましたが、ピラミッド型の周期表では族の繋がりがかえって弱くなってしまった印象を受けます。

ピラミッド型の周期表では族の繋がりを見るのがまるであみだくじのよう. 

長周期型周期表で亜族問題の解決とブロックの分類を同時に達成

ピラミッド型の周期表をはじめとして、様々な周期表が提案されていましたが 1950 年ごろまでは短周期型周期表が最も一般的に使われていました。では現在の大きな凹みを持ったいわゆる長周期型周期表が誕生したのはいつかな、と調べて見たところ、驚くことに、現在の周期表のベースになっている長周期型周期表は 1923 年すでに提案されていたようです9。それが下に示したものです。貴ガスが左端に配置されていることやホウ素 B とアルミニウム Al が凹みの左側に存在することを除くと、形は現在の周期表とほぼ一致しています。なお、族については短周期型周期表の名称を受け継いでいて、1-8 のギリシャ数字 (I – VIII) にA, B の亜族が振り分けられています。

Deming による周期表. 図は meta-synthesis から引用. 9

どのようにすればそれまでの周期表から長周期型周期表が変身できるのかを分析してみましょう。ピラミッド型周期表から出発するならば、2族と3族で切り離して、その元素の並びを横向きに変えると変身完了です。一方、短周期型周期表から出発するならば、I B, IIB, IIIA–VIIA 族をまるごと VIII 族の右隣にお引越ししています。短周期型と長周期型周期表は似ているようですが、大掛かりな変身ですね。とにかく、元素の縦のつながりを視覚的に弱めることなく、ピラミッド型周期表に見られた元素のブロックを作ることに成功しました。

周期表の変形過程を分析.

長周期型周期表はどのように広まった?

晴れて現在のベースになる周期表が提案されたわけですが、これが一気に広まったというわけではありません。先ほどお話ししたように、長周期型周期表が初めて提案されたのが 1923 年。それからどのように世間に認知されていったのでしょうか。試薬会社のパンフレットなどに採用された周期表が大量印刷·配布され、認知度が上がる、という流れがあったようです4。もちろん、ある周期表が教科書に使用されれば、その周期表の知名度は科学者でない市民にもぐっと高まります。周期型周期表も改良を重ねながら 1950 年ごろから教科書に使用され始めたようです4

しかし、短周期型周期表は1980 年の後半までしぶとく使われていました。確かに、短周期型周期表と長周期型周期表への変化は劇的であることを考えると、その移行に時間がかかることは理解できます。ここで逆の視点で考えて見ましょう。なぜ 100 年近く科学者に愛用されてきた短周期型周期表を捨ててまで、長周期型周期表へ移行しなければならなかったのでしょうか

なぜ短周期型周期表は消えてしまった?

がんばって調べてみたのですが、「短周期型周期表を廃止する」といった明確な声明を発見することはできませんでした。しかし、周期表の縦の列を 1–18 族と呼ぶことを推奨する声明が 1988 年に IUPAC により発表されています6。どうやらこの声明が短周期型周期表の実質的な絶滅につながっているようです。族の名称が 1–18 族となったのならば、長周期型周期表を使う方が族の命名がはっきりしますもんね。納得納得…。いや、さらに疑問を深掘りしましょう。

1988 年の IUPAC の発表により族の名称が変更され, 亜族は廃止されました.

なぜ亜族を廃止して、族の名称を 1–18 族に改めなければならなかったのか?

短周期型周期表と長周期型周期表が併用がされていた 1900年代後半、亜族 (A あるいは B 族) の決め方は周期表によって異なっていて混乱を生じていました4, 6。下の図に示したように III 族から VII 族までは、亜族をどのように割り振っても、似た性質の元素を縦に揃えることができ、周期律に不都合は生じません。III 族から VII 族は亜族 A と B の取り方が任意なわけです。

亜族の命名に関する混乱. 間違い探しのつもりで, 2 つの周期表の違いを見つけてみよう!

族の名称の振り分けなんてどっちがどっちでもええやん!って感じですが、周期表を初めて学ぶ学生にとっては、参考書によって名称が違うことは大きな混乱を招きます。こういった混乱を受けて、族名を変更することが審議され始めたらしく、1988 年に 1–18 族という名称が正式に IUPAC によって推奨されました。

2016 年に周期表が完成!

そんな周期表の族の名称のいざこざはさておき、周期表の空欄を埋めるべく、科学者は努力を重ねていました。2016 年になって、ニホニウム Nh やオガネソン Og などの118 番元素までが IUPAC によって正式に命名されました。メンデレーエフが周期表を開発してから 150 年近く経ってようやく、周期表の第7周期までの空欄を埋め尽くすことができました。これにて、周期表は完成した、ということになっています。

2019 年現在使用されているいわゆる長周期型周期表. 

上下が逆転した周期表が提案される

ん?上の段落の最後に文にちょっと注目。「周期表が完成した、ということになっている」? してないのという感じの物言いですね。そうです。実は20194月に Nature Chemistry 上下が逆転した周期表が提案されました8次回、その周期表について紹介したいと思います。

関連記事·リンク

参考文献

  1. 井口洋夫, 井口眞 「新·元素と周期律」, 裳華房, 2013.
  2. IYPT2019 のWebページ https://www.iypt2019.org/ 5/4/19 閲覧.
  3. Chemistry LibreText, https://chem.libretexts.org/Under_Construction/Purgatory/Textmaps_and_Wikitexts/Introductory_Chemistry/CK-12_Chemistry_(Version_I)/Chapter_3%3A_The_Organization_of_the_Elements/3.1%3A_Mendeleev’s_Periodic_Table, 5/4/19 閲覧.
  4. Fernellus, W. C.; Powell, W.H. J. Chem. Educ. 1982, 59, 504. DOI: 10.1021/ed059p504
  5. Quam. G. N. Quam, M. B. Types of Graphic Classifications of the element. https://www.meta-synthesis.com/webbook/35_pt/JCE_PTs_1934_medium.pdf
  6. 浜田 圭之助,化学教育1983, 31,482, 10.20665/kagakukyouiku.31.6_482
  7. PAC 1988, 60, 431-436. DOI: 10.1351/pac198860030431
  8. Poliakoff, M.; Markin, A. D. J.; Tang, S. L. Y.;  Poliakoff, E. Nature Chemistry 201911, 391. DOI: 10.1038/s41557-019-0253-6
  9. meta-synthesis https://www.meta-synthesis.com/index.html, 5/5/19 閲覧.
世界で一番美しい元素図鑑

世界で一番美しい元素図鑑

セオドア・グレイ
¥4,180(as of 01/15 04:28)
Amazon product information
元素楽章: 擬人化でわかる元素の世界

元素楽章: 擬人化でわかる元素の世界

揚げ鶏々
¥1,980(as of 01/14 20:43)
Amazon product information
Avatar photo

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. ルィセンコ騒動のはなし(前編)
  2. 経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材…
  3. 光分解性シアニン色素をADCのリンカーに組み込む
  4. ホウ素でがんをやっつける!
  5. 未来の科学コミュニティ
  6. アルミニウム工業の黎明期の話 -Héroultと水力発電-
  7. 臭素もすごいぞ!環状ジアリール-λ3-ブロマンの化学
  8. 湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果に…

注目情報

ピックアップ記事

  1. 有機反応の立体選択性―その考え方と手法
  2. 抗精神病薬として初めての口腔内崩壊錠が登場
  3. プラスチックに数層の分子配向膜を形成する手法の開発
  4. ウォルター・カミンスキー Walter Kaminsky
  5. ニュースタッフ参加
  6. リチウムイオン電池 電解液の開発動向と高機能化
  7. サクセナ・エヴァンス還元 Saksena-Evans Reduction
  8. ハーバード大Whitesides教授がWelch Awardを受賞
  9. アルメニア初の化学系国際学会に行ってきた!①
  10. 9‐Dechlorochrysophaentin Aの合成と細胞壁合成阻害活性の評価

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP